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ABSTRACT

Higher order finite element methods hold a lot of promise for doing more useful work per memory
accessed and stored, which might be advantageous on future computer architectures. But in problems
where there are under-resolved features such as boundary layers, the higher order methods often produce
non-physical solutions. Traditionally, for linear finite elements, the mass matrix is lumped to preserve
positivity. But this technique fails to restore positivity for higher-order elements. We propose a different
solution where the higher order zone is refined and a low-order method used to discretize the zone, all
while keeping number of unknowns and their locations fixed so that they can be interpreted using both
the low-order and high-order basis functions. This restores positivity in a simple test problem while
preserving the convergence rate of the high-order method.
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1 INTRODUCTION

Higher order finite element methods hold a lot of promise for doing more useful work per
memory accessed and stored, which might be advantageous on future computer architectures. But
in problems where there are under-resolved features such as boundary layers, the higher order
methods often produce non-physical solutions. This is implied by Godunovs theorem that states a
method cannot be linear, higher-order, and non-oscillatory all at the same time. Traditionally, for
linear finite elements, the mass matrix is lumped to preserve positivity [1, 2]. But this technique
fails to restore positivity for higher-order elements [3].

1.1 A Diffusion Example

The application we are targeting is radiation diffusion. Here we are solving a simple steady-
state diffusion problem, namely

−∇ · 1

3σ(x⃗)
∇E + σ(x⃗)E = S(x⃗) (1)

where the source S, and the opacities σt and σa are functions of space. If we solve a simple
one-zone problem using a third order method [4], where σ = 10 and S = 0 over the domain
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Figure 1. Exact solution and a one-zone, third order finite element solution showing the
oscillations in the under-resolved problem

0 < x < 1, driven at x = 0 with a net incoming flux of 1 and a vacuum boundary at x = 1, we
get the results in Fig. 1. The equation is dominated by the mass term (absorption), but the stiffness
term (diffusion) still moves particles. Approximating the steep exponential analytic solution with
a polynomial is oscillatory, since the Galerkin finite element method minimizes the error of the
approximate solution. The higher order terms that are not in the solution space contain the all error
in the solution.

1.2 What about mass matrix lumping?

Lumping the mass matrix for linear elements is the traditional route to solve these oscillations.
But Maginot [3] showed this only works some of the time. Any basis set that spans a polynomial
space gets the same, oscillatory solution.

This can be seen in Fig. 2 and Equations 2-4, where the basis function and mass matrices are
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shown for a cubic basis set.

MLobatto ≈

 0.71428 0.26620 −0.26620 0.11905
0.26620 3.5714 0.59524 −0.26620
−0.26620 0.59524 3.5714 0.26620
0.11904762 −0.26619857 0.26620 0.71428

 lump−−→

0.83333
4.1667

4.1667
0.83333


(2)

MGauss ≈

1.7393 0 0 0
0 3.2607 0 0
0 0 3.2607 0
0 0 0 1.7393

 (3)

MBernstein ≈

 1.4286 0.71429 0.28571 0.071429
.71429 0.85714 0.64286 0.28571
.28571 0.64286 0.85714 0.71429
.071429 0.28571 0.71429 1.4286

 lump−−→

2.5
2.5

2.5
2.5

 (4)

Lobatto basis functions are commonly used for continuous finite elements. The exact mass matrix
is approximately diagonal∗, and lumping does not change the discretization much, and the solution
is still oscillatory. Gauss basis functions are commonly used for discontinuous finite elements, and
form an orthogonal basis set. This means that the mass matrix is automatically lumped, and the
“self-lumped” solution is exactly the same as the unmodified solution. Bernstein basis functions
are strictly positive, and have a fairly uniform, dense mass matrix, as seen in Eq. 4. Lumping this
mass matrix changes the discretization the most, and in this case recovers a positive solution. But
there is no proof that this procedure will always be positive. Lumping changes the absorption term
discretization in an uncontrolled way that depends on the choice of basis functions, while leaving
the discretization of the diffusion term untouched. Now we will explore a procedure to modify the
discretization in a controlled manner to recover positivity.

2 CHANGING THE DISCRETIZATION EXPLICITLY

We hope to ensure physical, non-oscillatory solutions by doing two solutions in a (barely)
nonlinear process, with the goal of also recovering higher order convergence when we have smooth
solutions. The main steps are:

1. Discretize the system using the standard Galerkin finite element method. We can use arbitrary-
order continuous finite elements to discretize the diffusion equation [4]. The mass matrix is
not lumped.

2. Solve the linear system for the high-order energy density, EHO.

3. Detect where oscillations are likely in the solution. This usually happens in regions where
the gradient is extremely high. We compute a gradient length scale at each higher order node
of the solution using

ln = hz
|∇EHO

n |2
EHO

n

, (5)

∗In that the ratio of the diagonal to the diagonal of the lumped mass matrix is close to one. See Eq. 2
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Figure 2. Three different sets of basis functions are on the left along with the exact finite ele-
ment method solution and a lumped mass matrix solution for the sample one-zone problem.
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where hz is the size of the zone and EHO
n is the solution of the full high-order solution at

each node. We flag the zones for the low order method if

• the maximum length scale ln > ϵ, where typically ϵ = 2, and

• the opacity length scale is large, namely hzσz > 1.5, or

• the solution EHO
n is negative within the zone.

4. Re-solve the system with some zones selectively discretized using a low-order method. We
rebuild the matrix. For any unflagged zone, we use the standard high order finite element
method. For flagged zones, we refine the mesh within the zone in such a way to maintain the
same number of unknowns and their locations as the higher order basis.

This can be viewed as replacing the pth-order polynomial basis functions with p linear basis
functions. In addition to using lower-order basis functions, we also lump the contribution to
the mass matrix from the tagged zone.

This method changes both the mass and the stiffness matrix for the low-order element. This
is in contrast to pure mass matrix lumping, where only the mass matrix is modified.

We call this solution ELO.

5. Re-interpret the low order solution using the higher order basis functions. This solution
can then be used in other parts of the algorithm without the need to “know” that a different
method was used locally.

Using the one-zone problem from Section 1.1, the results of this procedure can be seen in
Fig. 3. The circles on the left sub-figures represent the support points for the basis functions.
These are replaced with “nodes” in virtual low-order refinement of the mesh on the left. Both
Lobatto and Bernstein basis functions recover positive solutions at the support points in this case.
But reinterpreting the low order solution with the higher order basis functions results in the re-
constructed solution between the interpolation points to become negative. For the strictly positive
Bernstein basis, the reconstruction is also positive within the zone.

It is important to note that this refinement and going to low-order polynomials changes both
the mass and stiffness matrix, while normal mass matrix lumping only changes the mass matrix.

3 RESULTS

A simple two-material test problem was used to test this method. The left side has low ab-
sorption, a large diffusion coefficient, and a large source term. The right side has large absorption,
small diffusion coefficient, and a small source term. The parameters are loosely based on a NIF
laser hohlraum wall, where the thin left side is the vacuum, and the thick right is the hohlraum wall.
Table I lists the numerical values used here for the problem†.

†The origin of the source sizes are that the material temperature in the left, thin material is 100 eV=1 160 451.9K and the right,
thick temperature is 36 696.712K, scaled so that T 4

r = 10−6T 4
l . The source term is found using S = σaT 4, where a = 4σSB/c is

the black body constant, which is related to the Stephan-Boltzmann constant σSB = 5.670 373 · 10−8 W2 m−1 K−4 and the speed
of light c = 299 792 458m s−1. The wall is 5 · 10−5 m thick.
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(a) EHO High-order Lobatto (b) ELO Low-order Lobatto

(c) EHO High-order Bernstein (d) ELO Low-order Bernstein

Figure 3. The sub-zonal reconstruction of the seventh order solution for the one zone problem
using both the exact high order method and the low-order formulation reconstructed using
the basis functions for both Lobatto and Bernstein basis sets. Red is positive, blue is negative,
white is zero.

Table I. Material properties for the test problem, loosely based on a laser hohlraum.
Property Left value Right value
Absorption: σ 102 106

Source: S 1.372× 1011 1.372× 109

xleft 0
xmiddle 5× 10−5

xright 1× 10−4
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Exact high-order method computed. We get
oscillations at the material boundary.

Solution length scale ln is computed using
exact solution.

Zones identified with large length scale or
negative solution.

Low order method used only in the green
zones, coupled to exact high-order method
in other zones. Final solution projected to
higher order basis function is positive!

Figure 4. Sample problem with 16 zones across the thickness. The phases of the solution
process are shown.

The different phases of the solution method are shown in Fig. 4. The low-order method is only
used in some of the zones near the material boundary.

Figure 5 shows the convergence rates for various order finite elements of both the unmodified
finite element method and the hybrid high-low order method. The low-order method maintains
positivity at the expense of accuracy, but once the mesh is fine enough to resolve the analytic
solution, it switches to the accuracy of the high-order method because no zones are tagged with a
high gradient length scale.

4 CONCLUSIONS

High-order methods are known for their oscillatory behavior. This new two-step method main-
tains physical solutions in under-resolved regions while transitioning to the higher order conver-
gence once the solution is resolved. The combination of two ideas was key to allowing this. First,
we used a low-order method to recover positive degrees of freedom. Second, we needed to use a
strictly positive set of basis functions (the Bernstein basis) to ensure the interpolated solution is
also positive
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Figure 5. Convergence as a function of the number of unknowns in the system. Solid lines
are for the unmodified high-order finite element method. The dotted lines are for the second,
partially-low order method. Note that the low-order method eventually snaps to the high-
order solution once the jump is resolved.
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